
1.  Introduction
Natural hazards, that is, the physical events that cause severe damage or loss (IPCC, 2007), pose an increas-
ing threat to health, safety, property, and critical infrastructure (Cutter & Emrich, 2005; Gall et al., 2011; 
White et al., 2001). In the United States alone, over 927 billion USD and 32,366 human lives were lost to 
natural disasters between 1960 and 2015 (CEMHS, 2019). This unsustainable trend is partly attributed to 
changes in the frequency and magnitude of weather and climate extremes (Batibeniz et al., 2020; Herring 
et al., 2020). However, historical data for some hazards indicate that escalating losses stem largely from 
greater exposure due to development in hazard zones (Downton et  al.,  2005; Gall et  al.,  2011; Weinkle 
et al., 2018), despite efforts to reduce impacts with improved hazard mapping, prediction, warning systems, 
and physical protections. Global assessments yield mixed findings, with some studies showing losses pro-
portional to changes in exposure (e.g., Schumacher & Strobl, 2011), and others identifying declines in loss 
per unit of exposure starting in the 2010's (e.g., Formetta & Feyen, 2019).

While the terminology varies among hazards researchers and policy-makers, risk is frequently defined as 
the likelihood of alterations in the functioning of a community resulting from the interaction of hazardous 
events and social conditions (IPCC, 2012). Risk, or the tendency to incur loss, thus derives from a combi-
nation of the physical characteristics of hazardous events (e.g., frequency, magnitude, duration, and areal 
extent), and exposure, which is a property of social-environmental systems that refers to the presence of 
people, livelihoods, or social, economic and cultural assets in places that could be adversely affected (Reid-
miller et al., 2018). Here, we evaluate how development patterns have changed the exposure of the nation's 
built environment to natural hazards between 1945 and 2015. We take a historical, multivariate assessment 
perspective, analyzing occurrence of and exposure to a suite of natural hazards responsible for high damage 
and fatality rates. To this end, we: (a) build hazard maps of earthquake, wildfire, flood, hurricane, and torna-
do hazards in the conterminous United States (CONUS), (b) estimate changes in exposure to these hazards 
using a data set recently created from Zillow (Historical Settlement Data Compilation; HISDAC-US [Leyk 
& Uhl, 2018; Leyk, Uhl, Connor, et al., 2020; Uhl & Leyk, 2020]), (c) describe the development patterns 
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that explain changes in exposure, and (d) use a case study from the Sacramento Valley to evaluate how 
management practices and human modification of natural systems influence risk at the local scale. While 
this example focuses on the relationship between flood exposure and vulnerable structures, it is intended 
to highlight more broadly the opportunities that structure-level data provide for hazard risk assessment.

2.  Data and Methods
2.1.  Building a Geography of Hazards in CONUS

We obtained information on earthquake, wildfire, hurricane, and tornado hazard from federal agencies, 
and on flood hazard from Fathom. Although the independent data sets are well-suited for empirical risk 
assessments, evaluations across multiple hazards remain problematic. Hazards are measured in terms of 
frequency or intensity, and on scales specific to each physical process. In addition, data sets may contain 
empirical observations, modeled potentials or a mixture of both. Different units and data limitations includ-
ing missingness and varying resolution make combining hazard measures challenging. Here, we detail the 
hazard layers we used and assumptions made with each data set.

2.1.1.  Earthquake

The earthquake hazard layer was obtained from the United States Geological Survey (USGS) Earthquake 
Hazards Program (Rukstales & Shumway,  2019). The layer depicts peak ground acceleration with a 2% 
probability of exceedance in 50 years on a uniform firm rock site (shear wave velocity in the upper 30 m 
of the Earth's crust = VS30 = 760 m·s−1). The model used to develop the hazard layer incorporates more 
than 100 years of global earthquake observations, widely accepted seismology-based principles, and a long 
history of analyses in the science and engineering communities. Inputs to the model are based on regularly 
updated, time-independent estimates of locations and sizes of future earthquakes (Petersen et al., 2020). 
Since the data represent a 2% probability of exceedance over 50 years, we set all values below 0.02/50, or 
0.0004 annual probability of exceedance, to zero.

2.1.2.  Flood

To estimate river flood hazard, we used a 30-m resolution, two-dimensional hydrodynamic model devel-
oped by Fathom (Sampson et al., 2015; Wing et al., 2017). This model was produced using publicly available 
data, including the USGS National Elevation Data set, and validated against Federal Emergency Manage-
ment Agency (FEMA) Special Flood Hazard Area maps and local hydraulic models from the USGS. Fathom 
provides the results for two model variants of river flooding at multiple recurrence levels. The first variant 
is an “undefended” version where levees are not incorporated into the hydrodynamic model. The second 
variant is a “defended” version where the effect of levees in the US Army Corp of Engineers National Levee 
Database are included into the hydrodynamic model. We used the “defended,” 100-year flood model for 
national scale analyses. However, we evaluate the importance of this decision in the case study of the Sac-
ramento Valley (Section 4).

2.1.3.  Hurricane

We developed the hurricane hazard layer with modeled wind fields constructed from the Extended Best Track 
Data set from the Atlantic basin, which contains tropical storms from 1988 to 2015 (Demuth et al., 2006). We 
only considered hurricanes whose paths came within 250 km of one or more US counties. For each storm, 
15-min maximum sustained wind speeds were estimated on a 1° grid using the stormwindmodel R package 
(Anderson, Ferreri, et al., 2020; Anderson, Schumacher, et al., 2020). We then computed annual maxima 
from these event-specific fields on a 1° grid and averaged across years for each grid cell. Because wind fields 
average over several years when there is very low to zero impact from hurricanes, the values that we report 
should not be interpreted as typical wind speeds during a hurricane (they are much lower). Instead, this 
spatiotemporally integrated value serves as an indicator of hurricane winds that scales with both the fre-
quency of hurricanes impacting a given grid cell and the historic magnitudes of those events.

2.1.4.  Tornado

The tornado hazard layer was based on spatial paths of tornadoes (1950–2018) obtained from National 
Oceanic and Atmospheric Administration's (NOAA) National Weather Service Storm Prediction Center 
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severe report database (NOAA, 2019). We subset these paths to exclude tornadoes prior to 1982, when the 
F-scale rating began to be consistently recorded. Each path was buffered by 300 m, a distance similar to the 
mean recorded path widths reported in previous studies (Agee & Childs, 2014). To obtain a hazard layer of 
annual frequency, we rasterized the buffered paths and computed a summary raster layer where the values 
represented the fraction of years from 1982 to 2018 that each grid cell was exposed to one or more torna-
does. Even though event footprints are small, the weather systems that produce them are meso-scale (tens 
to hundreds of km) leading to auto-correlation in the historic record that requires smoothing for hazard 
assessment (Dixon et al., 2013). For this reason, the tornado raster layer was smoothed using a focal mean 
function with a circular shape of 10-km radius.

2.1.5.  Wildfire

We employed the wildfire hazard layer from the wildfire hazard potential (WHP) product developed by the 
Fire Modeling Institute (Forest Service, United States Department of Agriculture). This data set integrates 
burn probability and intensity (Short et al., 2016), vegetation data from LANDFIRE 2012 and wildfire oc-
currence data from the FPA-FOD (Short, 2017) to represent the relative potential for wildfire that would be 
difficult for suppression resources to contain (Dillon, 2018). Given that WHP depends on vegetation type 
and continuity, this hazard layer is not independent of urban development.

2.2.  Identifying Hazard Hotspots

Hazards were measured at different spatial resolutions and with different units. To compare them and es-
timate exposure, we resampled all hazard layers to a 250 × 250 m reference grid projected in NAD1984 
USGS-Albers-Equal-Area-Conic (Figure S1). Resampling was performed via bilinear interpolation, that is, 
we computed the value of a cell as a function of the weighted average of the four nearest input cell centers 
(Gonzalez & Woods, 2002). We then defined hotspots for each natural hazard as grid cells where the prob-
ability or intensity of the hazard exceeded the 90th percentile among all grid cells in CONUS. In all cases, 
percentiles were based on unique hazard values (Figure S2).

2.3.  Estimating Changes in the Built Environment Within Hotspots

Exposure is often measured by the number of people physically in harm's way (Schumacher & Strobl, 2011). 
Alternatively, risk assessments conduct inventories of structures to assess location of people and property in 
relation to a hazard (Highfield et al., 2014; Fuchs, Keiler, & Zischg, 2015; Fuchs, Röthlisberger, et al., 2017). 
Settlement patterns and their changes are typically derived through classification of satellite images or 
maps, which provide information on the location and nature of land use related to the built environment 
(Ehrlich et al., 2018; Paprotny et al., 2018). However, several data limitations affect efforts to assess hazard 
exposure and vulnerability. First, remotely sensed data products are constrained to the post-1970 era of sat-
ellite technology. Second, they tend to be coarsely classified by development intensity, thus lacking specific 
characteristics of built-up land. Finally, most of these data products are less accurate for rural areas (Leyk 
& Uhl, 2018).

To estimate detailed, consistent development patterns (Smith et al., 2002; Wickham et al., 2013), we used 
the Historical Settlement Data Compilation for the US (HISDAC-US; Leyk & Uhl, 2018; Uhl & Leyk, 2020). 
HISDAC-US is a collection of gridded settlement layer time series derived from the Zillow Transaction and 
Assessment Data set (ZTRAX), a housing and property database that contains over 370 million records 
on housing and land-parcel attributes. Recent work shows a strong correlation between built-up property 
counts in HISDAC-US and population size (Leyk, Uhl, Connor, et al., 2020), indicating that estimates of 
exposure based on this data set also serve as an approximation to the number of people in harm's way. We 
note that issues of missing building records or spatial offsets in geolocations affect ZTRAX data, and are 
subsequently inherited by HISDAC-US. However, an accuracy assessment with parcel records and building 
footprints found F-measures of greater than 0.9 for each year of the database (Leyk & Uhl, 2018).

Our analyses are based on a version of the structure count data that is undissolved, meaning that it doc-
uments all structures, including multiple units in a building, and does not incorporate agricultural land 
use. Land use is characterized through description fields in the ZTRAX data set. We employed the attribute 
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“PropertyLandUseStndCode” to determine land-use types and create gridded time series of development 
layers. Each record in ZTRAX was assigned a pixel group through grid indexing, which created three at-
tributes for each structure. The three new attributes, x, y, and location ID are linked to and describe the 
positions of the 250 × 250 m grid cells projected in NAD1984 USGS-Albers-Equal-Area-Conic. Thus, each 
built structure is linked to an underlying grid cell or pixel group.

For each point in time, we determined the most frequent land-use code per pixel group and assigned this 
value to the output template grid at the designated grid ID. While generating time series of the number of 
properties per grid cell, we registered missing data across multiple attributes. Records that did not have a 
value for the built year or did not have a value for land use were separated from the database. As this study 
was generalized across CONUS, local data incompleteness issues should not significantly affect our results.

Finally, we estimated trends in development for 1945–2015 at 5-year intervals by overlaying the develop-
ment and hazard layers. For each hazard, exposure was calculated as the density of structures within the 
corresponding hotspot (Equation 1).

   
   1
hh,t h,tExposure structures area ,� (1)

where h is a hazard hotspot and t is a year. Areah was obtained by multiplying the number of grid cells with-
in each hazard hotspot h by the area of a grid cell (250 × 250 m).

2.4.  Describing the Development Patterns That Explain Changes in Exposure

In order to account for regional and historical differences in development in each hazard hotspot, we focused 
on two distinct components of urbanization: expansion and densification (Leyk, Uhl, Connor, et al., 2020). 
Expansion refers to the development of formerly undeveloped land, and was calculated as (Equation 2):

     
  1

h,t h,t hExpansion Occ _area area ,� (2)

where h is a hazard hotspot, t is a year and occ_area is the surface area of all cells with at least one structure.

Trends in densification, that is, the addition of new structures to previously developed areas, were obtained 
with Equation 3:

     
   1

h,t h,t h,tDensification structures occ _ area ,� (3)

where h is a hazard hotspot, t is a year and occ_area is the surface area of all cells with at least one structure.

Temporal trajectories in exposure, expansion and densification were calculated for the total number of 
structures in each hotspot. The distribution of structures per grid cell ranges from 1 to 9,831 and is heavily 
skewed. To prevent trajectories from being dominated by the highest-density cells, we grouped structure 
counts per cell at each point in time into three density classes defined by natural breaks in the data: low 
density (<113 structures × km−2), intermediate-density (113–1,130 structures × km−2), and high-density 
(>1,130 structures × km−2; See Figure S3 for details). Given the similarities between the mosaic of rural/
urbanized areas produced by the US Census Bureau (Ratcliffe et al., 2016) and the spatial distribution of 
density classes (Figures S1f and S4), we expected that these divisions would serve as an overall approxima-
tion to development patterns in rural, suburban/urban and dense metropolitan areas.

We calculated exposure, expansion and densification for each density class in all hotspots according to 
Equations 1–3, respectively. These equations were slightly modified to estimate national trends, where the 
parameter areah (area of the hazard hotspot) was replaced by the surface area of CONUS.
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2.5.  Informing More Targeted Hazard Risk Analysis: Relationships Among Hazard, Exposure, 
and Vulnerability at Local Scales

In order to illustrate how our national scale analyses can inform more targeted risk assessment at the local 
level, we developed a case study of the Sacramento Valley (California) and examined relationships among 
hazard, protective interventions, exposure, and vulnerability. In particular, we assessed the effects of ad-
aptation (e.g., physical flood defenses) and changes in exposure of the most vulnerable properties. Our ap-
proach is in keeping with Federal Emergency Management Agency guidelines for hazard mitigation plans 
for the Sacramento Valley, an area in a flood hazard hotspot. We focused on floods because this hazard layer 
allows the explicit quantification of the role of social-technological intervention on development patterns. 
To this end, we differentiated flood depths in the absence of levees (“undefended” model) against those 
associated with levees (“defended” model) to determine where and how much flood water is displaced from 
protected areas to bypasses. Large positive values correspond to defended areas behind levees, and small 
negative values are indicative of places where water was routed once the defensive structures were installed. 
With this information, we estimated flood risk as a function of the depth of the 100- and 500-year floods in 
Hydrologic Unit Code 8 (Steeves & Douglas, 1994) using Equation 4:

       flood,huc8,t flood,huc8 huc8,tRisk depth structures ,� (4)

where flood is a flood return interval (i.e., 100 and 500 years), huc8 is a Hydrologic Unit Code 8, t is a year, 
and depth is the water depth. We attributed differences in risk between the defended and undefended mod-
els to the inclusion or exclusion of flood control levees.

Finally, we separately calculated the relative proportion of vulnerable to total structures in areas where the 
differences between flood depths in the undefended and defended models were <−0.5, −0.5 to 0, 0–0.5, 
and >0.5 m. Vulnerable land use refers to unsafe structures, properties with large numbers of inhabitants, 
and critical/institutional facilities, that is, mobile homes, trailer parks; multi-family dwellings; welfare, so-
cial-service, and low-income housing; apartment buildings with more than 100 units; high-rise apartments; 
boarding and rooming houses; transient lodging; motels; medical buildings, and clinics; private and public 
hospitals; public-health care facilities, nursing, rest, convalescent, handicap, and retired homes; residential 
group homes; public schools, and correctional facilities. We selected these groups based on land-use types 
that were identified in the literature as particularly vulnerable to hazards (Cutter, Boruff, & Shirley, 2003; 
Ma & Smith, 2020; Petal, 2004; Segal et al., 2017; Wilson et al., 2019).

3.  Results and Discussion
3.1.  Over Half of Existing Structures Lie Within Hazard Hotspots, and Exposure is Increasing

Natural hazards have unique geographies dictated by complex environmental dynamics (Figure S1). The 
general relationship between the probability and magnitude of natural events is heavy-tailed and resem-
bles a stretched exponential distribution or a power-law (Figure S2). As a consequence, the probability of 
extreme events is higher than under the assumption of normality. Given that unusual, very large events 
reside in the right tail of the frequency-size distribution, we defined hazard hotspots as pixels where event 
probability or magnitude exceeded the 90th percentile of all unique values in CONUS. Hotpots therefore 
correspond to the most hazardous subregions of hazard zones used in exposure assessments (e.g., Willis 
et al., 2016, and references therein). Historically, the most devastating natural disasters, such as the San 
Francisco earthquake (California; April 1906; ∼3,000 fatalities; ∼11 billion inflation-adjusted 2019 USD 
loss), Galveston hurricane (Texas and Oklahoma; September 1900; 6,000–12,000 fatalities; ∼1 billion infla-
tion-adjusted 2019 USD), and the tri-state tornado (Illianois, Indiana, and Missouri; March 1925; 629 fatal-
ities; ∼2.3 billion inflation-adjusted 2019 USD) occurred in these hazard hotspots. Recent disasters in New 
Orleans (Hurricane Katrina), Houston (Tropical Storm Harvey), and New York/New Jersey (Superstorm 
Sandy) speak to a continuation of this trend.

The combined area of all hazard hotspots covers ∼31% of the country (Figure 1a). However, ∼57% of struc-
tures lie within their boundaries. In 1945, ∼173,000 structures were located in the intersection of at least 
two hazard hotspots. After seven decades of sustained growth, this number surpassed 1.5 million structures. 
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Figure 1.  Trends in exposure in hazards hotspots (1945–2015). The probability/magnitude of natural events is assumed to be constant over the entire period, 
and changes in exposure are attributed solely to development. (a) Location of hazard hotspots (top 10% of unique hazard values). Temporal trends in (b) 
exposure, (c) densification, and (d) expansion of structures in each hotspot. (e) Cumulative change in the number of structures as a function of cumulative 
change in built-up area for each hazard. The dots represent years between 1945 and 2015 at 5-year intervals. (f) Expanded view of the area indicated with a 
rectangle in (e).
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These critical levels of exposure point to our inability, lack of knowledge, or unwillingness to limit develop-
ment in hazardous zones (Cutter & Finch, 2008; Cutter, Hodgson, & Dow, 2001). Rapid increases in building 
density in a subset of hotspots underlie this pattern (Figures 1b–1f). In particular, the density of structures 
in earthquake- and hurricane-prone areas increased faster, and is currently higher, than average trends 
in development for CONUS as a whole (1.7 and 3.1 times higher, respectively). Contrasting development 
trajectories were observed in the remaining hazard hotspots. Structures were added to tornado-prone areas 
at rates that closely match the national averages. Trends in structure density in zones coinciding with the 
wildfire or flood hotspots fall below the national trajectory (Figure 1b). These differences suggest that the 
observed exposure results from the interaction of unique hazard geographies with the legacy of idiosyncrat-
ic long-term development trajectories.

Development trajectories can be decomposed into two distinct processes: Densification (addition of struc-
tures to previously developed lands), and expansion into formerly undeveloped areas. In hazard hotspots, 
densification was initially rapid and decelerated in recent decades (Figure 1c). Frequently, high densifi-
cation is the product of rapid influx of population and capital to urbanized areas. Conversely, expansion, 
which is often associated with the addition of less expensive housing, has linearly increased since the 1940’s 
(Figure 1d). Despite relatively similar long-term trends, we find notable differences among hazards in the 
relative contribution of densification and expansion to total exposure (Figures 1e and 1f). Specifically, de-
velopment in earthquake and hurricane hotspots was primarily driven by densification, most of which 
occurred prior to 1960 (Section 3.2). Increases in exposure to wildfires, floods, and tornadoes, in contrast, 
have mostly taken place in the form of expansion (Section 3.3).

Exposure to natural hazards is a necessary but insufficient determinant of risk, as impacts are also con-
ditioned on the vulnerability of social-environmental systems (Cutter, Boruff, & Shirley, 2003; Emrich & 
Cutter, 2011; Turner et al., 2003). Adaptive capacity is constrained by social and economic disparities, which 
are often the by-product of the historical and demographic processes underpinning the mosaic of land uses 
(Grimm et al., 2008; Smit & Wandel, 2006; Vogel & O'Brien, 2004). National scale assessments that explic-
itly factor in the relative contribution of expansion and densification to exposure across the urban-rural 
gradient can therefore help identify social-economic contexts associated with otherwise hidden inequity of 
vulnerability.

3.2.  Increasing Exposure to Earthquakes and Hurricanes is Primarily Driven by Densification of 
Urban/Suburban Areas

3.2.1.  Earthquakes

Seismic hazard maps suggest that large earthquakes are more likely to occur in the western United States 
(Figure  S1a), where earthquake magnitude is largely dictated by regional tectonics and the distribution 
of stress along major plate boundaries, including the San Andreas transform boundary (California), the 
Cascadia subduction zone (Pacific Northwest), and the eastern margin of the Basin and Range extensional 
province (northern Mountain West). In the east, hazard is relatively low except in the proximity of zones of 
historic intraplate deformation, particularly near the New Madrid Seismic Zone (south-central Mississippi 
Valley).

The earthquake hotspots defined in this study correspond to an area of 658,000 km2 with a 2% probability 
of peak ground acceleration (PGA) of at least 0.35  g in 50  years. Although the correlation between in-
strumental scales, such as PGA, and other intensity measures has large uncertainties, the United States 
Geological Survey (USGS) characterizes the perceived shaking of earthquakes in hotspots as “severe” to 
“extreme,” and their possible damage as “moderate” to “very heavy” (Worden, 2016). The partition of the 
HISDAC-US data set into density classes (i.e., low density: 1–112 structures × km−2; intermediate-density: 
113–1,130 structures ×  km−2; and high-density: >1,130 structures × km−2) shows that 90% of the 13 mil-
lion structures exposed to potentially devastating earthquakes (Figures 2a and 2b), are located in high- and 
intermediate-density areas. These estimates are heavily weighted by structure densities in urban-suburban 
cores along the Pacific coast (e.g., Seattle, Portland, San Francisco, and Los Angeles) and some isolated cities 
in the central to southeastern US (e.g., Charleston, Memphis, and Knoxville). In these metropolitan areas, 
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high probability of ground motion coupled with great potential for damage result in high seismic risk, with 
Los Angeles County alone accounting for 22% of the annualized loss from earthquakes nationwide (Jaiswal 
et al., 2017).

Between 1945 and 2015, the number of structures in major seismic areas increased monotonically and was 
consistently higher than the national trends (Figures 1b and 2b). We attribute this trajectory to the continu-
ous addition of new buildings to already dense areas, along with sustained but local expansion into undevel-
oped lands (Figures 2b–2e). Prior to 1965, periods of slower densification in high-density regions coincide 
with rapid development of intermediate-density zones. This trade-off is consistent with fast growth of cities 
often observed in coastal states (Crossett et al., 2005; Hauer et al., 2016), and exemplifies the interdepend-
ence of densification and expansion, as densification frequently leads to outward expansion due to a variety 
of complex social, economic and cultural factors (e.g., people being priced out of urban centers). Given the 
right conditions, these newly developed lands may become high-density areas in time.

As the number of structures rises, so do the capital and human lives exposed to potentially devastating 
events. However, greater exposure does not necessarily imply a proportional increase in seismic risk. Build-
ing codes and construction standards for earthquake resistance are constantly improving, meaning that 
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Figure 2.  Exposure to earthquakes (1945–2015). Peak ground acceleration (PGA) is assumed to be constant for the entire period, and changes in exposure are 
attributed solely to development. (a) Location of the earthquake hotspots. Temporal trends in (b) exposure, (c) densification, and (d) expansion of structures 
in the earthquake hotspots. Note that y-axis scales are different in (c and d). (e) Cumulative changes in the number of structures in the earthquake hotspots as 
a function of cumulative changes in occupied area. The dots represent years between 1945 and 2015 at 5-year intervals. In all cases, the variables are grouped 
by classes of development density (i.e., low density = 1–112 structures × km−2; intermediate-density = 113–1,130 structures × km−2; and high-density >1,130 
structures × km−2).
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modern structures are likely to be less vulnerable than aging buildings, and retrofitting can reduce po-
tential damage (ASCE, 2014). Losses from earthquakes, nonetheless, continue to increase in CONUS and 
worldwide mainly because development outpaces hazard mitigation (Jaiswal et al., 2017; Lyles et al., 2014; 
Tucker, 2007).

3.2.2.  Hurricanes

Hurricanes primarily affect the eastern half of CONUS, with the highest number of occurrences along the 
Atlantic and Gulf Coast states (Figure S1c). The majority of hurricanes occur between June and Novem-
ber, driven by seasonal thermodynamics, particularly those related to changes in sea-surface temperature 
and vertical wind shear over the Atlantic (Latif et al., 2007). Hurricanes cause extreme wind, storm surge, 
rain, and flooding, all of which can lead to substantial damage and loss of lives (Rappaport, 2014; Weinkle 
et al., 2018; Willoughby, 2012).

Hurricane Harvey illustrates this phenomenon (Figure S5). In August 2017, Category 4 Hurricane Harvey 
made landfall in Texas, with 52 associated tornado events, record amounts of precipitation, and extensive 
flooding exacerbated by anthropogenic climate change and urbanization (Risser & Wehner, 2017). The loss-
es of the Harvey-associated tornadoes were over 7 million USD (SVRGIS, 2019). In addition, 6.8 billion USD 
was paid out across over 75,000 building-related flood insurance claims, along with more than 2 billion 
USD over 52,000 contents-related insurance claims (FEMA NFIP, 2020). Unlike the capital losses to com-
pound disturbances, the combined effects of multiple hazards may be non-additive. For example, tornado 
warnings advised people to “seek shelter in an interior room on the lowest floor” of their homes, many of 
which were flooded (Evans, 2018). Conflicting actions to mitigate risk from multiple hazards thus introduce 
additional challenges, including overcrowding in evacuation centers with increased disease risk.

Here, we focus on wind gusts resulting from hurricane events. Associated rain and flooding show similar 
spatial patterns, albeit marked by a somewhat broader spatial domain (Zhou & Matyas, 2017). The area sub-
ject to the top 10% average maximum wind fields, hereafter hurricane hotspots, occurs across 744,500 km2 
of the intensely developed Atlantic and Gulf coasts (average maximum wind speed >6 m·s−1; Figure 3a). 
Mainly as a consequence of the densification of coastal cities, including Houston, Miami, Boston, and New 
York, at least 28 million structures are exposed to strong winds from Atlantic tropical storms. In contrast 
to the earthquake hotspots (Figure 2), more sustained increases in expansion occurred over all three den-
sity classes and accompanied the densification process (Figures 3b–3e). Differences in the relative role of 
expansion in these hotspots likely arise from underlying environmental, social and political conditions. 
Suburban structures have expanded more in the less-fragmented landscapes of the East, particularly across 
the coastal plains. Conversely, restrictive land-use policies, geographic and topographic limitations, and 
escalating housing costs have constrained the expansion of urban cores on the West Coast (Alig et al., 2004; 
Boschken, 1982).

Urbanization, rather than climate change, has been identified as the main cause of increasing losses to 
natural hazards in metropolitan areas across the US (Bouwer, 2011; Depietri & McPhearson, 2018). Urban 
cores are home to a large proportion of the nation's population and assets, and function as administrative, 
economic and innovation centers. As a result, the direct impacts of natural hazards in these areas can be se-
vere and trigger cascading impacts that extend beyond city limits (Godschalk, 2003; Sebastian et al., 2007). 
The indirect consequences, including supply-chain and business interruption, unemployment, and reloca-
tion of potentially large numbers of individuals, also have long-term effects that are distributed unequally 
across socioeconomic populations (Davies et al., 2018; Emrich & Cutter, 2011).

Demographic studies reveal that resources tend to increase after major hurricanes while poverty levels do 
not change significantly (Pais & Elliott, 2008). These contrasting trends reflect post-disaster socioeconomic 
polarization, which is frequently associated with the proliferation of smaller, wealthy neighborhoods in 
severely damaged urban areas along with the displacement of racial minorities (Schultz & Elliott, 2013). 
However, comparison of post-Hurricane Andrew demographic trajectories in Miami, Florida, and less-pop-
ulated areas of Louisiana suggests that displacement of disadvantaged groups prevailed in urban areas 
but the contrary was observed in more rural settings. There, vulnerable groups were unable to relocate 
whereas more advantaged residents moved and, in cases, upgraded their residential circumstances (Elli-
ott & Pais, 2010). Differential impacts and post-disaster recovery trends across the rural-urban spectrum 

IGLESIAS ET AL.

10.1029/2020EF001795

9 of 20



Earth’s Future

highlight the need to incorporate high-resolution structure and population data such as HISDAC-US in 
exposure and risk assessments.

3.3.  Increasing Exposure to Floods, Tornadoes, and Wildfires is Primarily Driven by Expansion 
of Suburban and Rural Development

3.3.1.  Floods

Flood hazard is widespread, but highest near river channels with large contributing drainage areas (e.g., 
Mississippi River and its tributaries) and broad floodplains (Figure S1b). The location and timing of the 
largest flows vary geographically, reflecting differences in rainfall magnitude, antecedent conditions, and/
or snowmelt dynamics (O'Connor & Costa, 2004). Interacting climate, geology, management, sediment dy-
namics, and dominant runoff generation mechanisms result in large unit discharge in places like southern 
Texas, the western slopes of the Cascade Range, and throughout the Appalachians.

The flood hazard hotspots defined in this study are constrained to floodplains where the water depth of 
the 100-year flood exceeds 0.6 m (i.e., 90th percentile flood depth). We focused on 100-year events because 
that is the parameter used by FEMA for floodplain management and insurance regulations (See Section 4 
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Figure 3.  Exposure to hurricanes (1945–2015). Hurricane probability is assumed to be constant over the entire period, and changes in exposure are attributed 
solely to development. (a) Location of hurricane hotspots. Temporal trends in (b) exposure, (c) densification, and (d) expansion of structures in the hurricane 
hotspots. Note that y-axis scales are different in (c and d). (e) Cumulative changes in the number of structures in the hazard hotspots as a function of 
cumulative changes in occupied area. The dots represent years between 1945 and 2015 at 5-year intervals. In all cases, the variables are grouped by classes of 
development (i.e., low density = 1–112 structures × km−2; intermediate-density = 113–1,130 structures × km−2; and high-density >1,130 structures × km−2).
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for discussion of the implications of this criterion). The extent of damage to structures of events of these 
characteristics depends on building type, water depth, flood duration, and speed of the current. Depth-dam-
age curves suggest that structural failure due to static inundation is rare, but a 0.6-m flood would compro-
mise ∼30% of a two-story building, including major damage to finishes, contents, and inventory (Pistrika 
et al., 2014).

Flooding is a local phenomenon. Hotspots have a relatively small total extent (128,440 km2) and are home 
to 552,000 structures, mainly concentrated in intermediate-density areas (Figure 4a). Since 1945, the rate of 
growth of settlements and towns along rivers and within floodplains has been 30% lower than the national 
average (Figures 1b and 4b). This pattern likely reflects the expansion of river towns into the surrounding 
area away from flood hazard (Figures 4c–4e), as well as the establishment of levees and other protective in-
frastructure. Despite shifts in development toward suburbs and the small geographic extent of the hotspots, 
floods cause more property damage than any other natural hazard in CONUS (CEMHS, 2019). Urbaniza-
tion in hazardous areas accounts for part of the increasing losses (Downton et al., 2005). However, 36% of 
damages in 1988–2017 was attributed to more frequent heavy precipitation, suggesting that climate change 
may be exacerbating the cost of inundation (Davenport et al., 2021).
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Figure 4.  Exposure to floods (1945–2015). Water depth is assumed to be constant over the entire period, and changes in exposure are attributed solely to 
development. (a) Location of flood hotspots. Temporal trends in (b) exposure, (c) densification, and (d) expansion of structures in the flood hotspots. Note 
that y-axis scales are different in (c and d). (d) Cumulative changes in the number of structures in flood hotspots as a function of cumulative changes in 
occupied area. The dots represent years between 1945 and 2015 at 5-year intervals. In all cases, the variables are grouped by classes of development (i.e., low 
density = 1–112 structures × km−2; intermediate-density = 113–1,130 structures × km−2; and high-density >1,130 structures × km−2).



Earth’s Future

3.3.2.  Tornadoes

Tornadoes are concentrated in the Midwest, south-central US, and Gulf coastal plain (Figure  S1d). The 
spatiotemporal footprint of tornadoes is relatively small, with heavy-tailed duration and path-length distri-
butions. Most tornadoes last less than an hour or two, and travel distances typically on the order of tens of 
kilometers, although tracks over 300 km long have been reported (Battan, 1959; Johns et al., 2013). Of the 
∼1,000 tornadoes each year, most occur in late spring through early fall, with longer paths in the southern 
and central Great Plains (Farney & Dixon, 2015). Extreme winds are the main cause of damage to the built 
environment from tornadoes.

Tornado hotspots, that is, pixels where the annual probability of at least one tornado is larger than 0.001, 
represent a 925,270 km2 area that largely overlaps with the “Tornado Alley” (Figure 5a). In this region, 
juxtaposition of large hazard potential and pronounced social and structural vulnerability associated with 
elevated poverty rates and substantial mobile home densities creates very high risk to lives and property 
(Ashley & Strader, 2016). Similar to other hazards, the ability to withstand and recover from tornadoes is de-
pendent on social factors. Economically advantaged residents typically prefer to repair or rebuild structures 
affected by extreme winds rather than relocate. In contrast, socioeconomically vulnerable populations are 
forcibly mobile, even when disaster declarations and federal aid are in effect (Raker, 2020).
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Figure 5.  Exposure to tornadoes (1945–2015). Tornado probability is assumed to be constant over the entire period, and changes in exposure are attributed 
solely to development. (a) Location of tornado hotspots. Temporal trends in (b) exposure, (c) densification, and (d) expansion of structures in the tornado 
hotspots. Note that y-axis scales are different in (c and d). (e) Cumulative changes in the number of structures in the tornado hotspots as a function of 
cumulative changes in occupied area. The dots represent years between 1945 and 2015 at 5-year intervals. In all cases, the variables are grouped by classes of 
development (i.e., low density = 1–112 structures × km−2; intermediate-density = 113–1,130 structures × km−2; and high-density >1,130 structures × km−2).
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During the last eight decades, structures in tornado hotspots were built at a similar rate as across CONUS 
(Figures 1b and 5b). Development was historically skewed toward low- and intermediate-density areas, and 
the long-term increase in exposure to tornadoes can be largely attributed to expansion into less developed 
lands (Figures 5c–5e). In the 2000’s, however, expansion and densification rates in the high-density class up 
to 1.8 and 2.3 times larger than the national average, respectively, led to a substantial addition of structures 
to hazardous areas. This increase is a likely consequence of the booming economies of large cities in torna-
do hotspots, such as Atlanta (impacted by a tornado in May 2008; Coffin, 2008). Were these trends to con-
tinue, average tornado impacts in 2100 are expected to be 6 times greater than in 1940 (Strader et al., 2017).

3.3.3.  Wildfires

Wildfire hazard potential (WHP) in CONUS is markedly regional (Figure S1e). Wildfire behavior is influ-
enced by socioeconomic and management activities altering fuel load and continuity as well as probability 
of ignition, with the hazard itself affected by development. Wildfires, in turn, can increase the likelihood of 
subsequent disturbances, such as landslides or floods, and cause severe air pollution over large areas (Gill 
& Malamud, 2014).

We defined wildfire hotspots as pixels where WHP is larger than 1,663 (90th percentile of the WHP distri-
bution), meaning that the relative potential for wildfire that would be difficult to suppress is high to very 
high (Dillon, 2018). Similar to floods, wildfire hotspots are geographically fragmented and less extensive 
than those delimited for earthquakes and hurricanes (365,880 km2; Figure 6a). Between 1945 and 2015, over 
330,000 buildings were added to these fire-prone areas. Although this is the smallest number of structures 
built among hotspots, it represents an 18-fold increase in density and a 10-fold growth of the exposed built-
up area with respect to 1945. Densification and expansion rates in wildfire hotspots are thus three and 10 
times higher than the national mean, respectively (Figures 1b–1f and 6b–6e). Analysis of past fires suggests 
that these estimates are very conservative, as an average of 2.5 million homes, most of which lie in areas 
of moderate hazard potential, were within or less than 1 km from the boundaries of wildfires every year 
between 1992 and 2015 (Mietkiewicz et al., 2020).

The addition of new structures to wildfire hotspots was non-linear with a clear inflection point in the mid-
1970s (Figure 6b). Increased exposure mainly resulted from the expansion of low- and intermediate-den-
sity settlements (Figures 6c–6e), where houses mingle with vegetation. This spatial arrangement further 
increases wildfire potential by facilitating the introduction of human-related ignitions, which start 84% of 
fires that threaten homes (Balch et al., 2017), into flammable landscapes. In 2016, the estimated impacts of 
fire on private property and infrastructure were approximately 60 billion USD (Schoennagel et al., 2017). 
High-cost, high-loss events like the 2018 Camp Fire in California that resulted in 85 fatalities and damage 
estimated at 16.5 USD exemplify the rising risk associated with the expansion and proliferation of buildings 
and ignitions in wildlands, against a backdrop of a warming climate.

Building codes that do not explicitly account for the potential effects of natural hazards allow the prolifer-
ation of vulnerable structures. Expansion typically produces more, and more affordable housing than den-
sification (Bitter et al., 2007), and is frequently associated with fewer planning and zoning restrictions than 
densification (Geshkov & DeSalvo, 2012). Given these considerations, the main implications of exposure 
predominantly driven by expansion, as observed in flood, tornado, and wildfire hotspots, are twofold. First, 
risk may rise significantly in years to come due to spread of more vulnerable structures. Second, expansion 
may increase exposure disproportionately in lower-income or disadvantaged communities. In the future, 
natural disturbances may therefore meet high property and social vulnerability, resulting in large disrup-
tions to communities, slow recovery, and greater social inequality.

4.  Case Study of Flood Exposure and Vulnerability in the Sacramento Valley
Our national scale analysis of exposure focused solely on the development of new structures in hazard 
zones, thus ignoring other important and hard to quantify elements of risk. For example, human modifica-
tion of natural systems, both intended and unintended, may confound interpretations of trends in risk. We 
use this case study to highlight how structure-level data can help address these challenges when impacts 
are analyzed at the process level and considered in their local social-environmental context. To illustrate 
this potential, we focus on flooding potential in the Sacramento Valley because it is a large river system (a) 
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characterized by high flood hazard, (b) well-suited to the scale of our risk analysis, and (c) extensively pro-
tected by levees and water diversions engineered under a regulatory framework.

Early water management efforts in the Sacramento Valley focused on taming the Sacramento River into a 
single-threaded river using artificial levees. This strategy was at odds with naturally low river conveyance 
capacities and frequent inundation of the valley (James & Singer, 2008), and further exacerbated by river 
aggradation that was triggered by hydraulic mining in the Sierra Nevada (Gilbert, 1917). Modern river man-
agement began with the Sacramento River Flood Control Project in 1911, which coordinated interventions 
along the river system using a series of water diversions that established the Sutter and Yolo bypasses (James 
& Singer, 2008). While still heavily reliant on levees to protect populated areas, keeping water in the Sacra-
mento River itself was no longer a management goal.

The Sacramento-San Joaquin river network is an oft-cited system for the so-called “levee effect” (Di Bal-
dassarre et al., 2015), whereby flood control structures actually increase flood risk (Burton & Cutter, 2008) 
and alter risk perception, in part, by removing floodplains from federal designations of flood hazard (Ludy 
& Kondolf, 2012). Decisions on the variables used to communicate hazard and set insurance regulations 
(e.g., the “100-year floodplain”) may mask residual risk, especially where a hazard at one probability level 
strongly differs from another. Levees are designed to withstand floods with a certain probability like the 
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Figure 6.  Exposure to wildfires (1945–2015). Wildfire hazard potential is assumed to be constant over the entire period, and changes in exposure are 
attributed solely to development. (a) Location of wildfire hotspots. Temporal trends in (b) exposure, (c) densification, and (d) expansion of structures in the 
wildfire hotspots. Note that y-axis scales are different in (c and d). (d) Cumulative changes in the number of structures in the wildfire hotspots as a function of 
cumulative changes in occupied area. The dots represent years between 1945 and 2015 at 5-year intervals. In all cases, the variables are grouped by classes of 
development (i.e., low density = 1–112 structures × km−2; intermediate-density = 113–1,130 structures × km−2; and high-density >1,130 structures × km−2).
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100-year flood, but not to reduce the risk of more extreme events (Pinter et al., 2016). This point is illustrated 
by contrasting inundation depths at different probability levels. Differences between the “defended” and 
“undefended” model variants (Sampson et al., 2015; Wing et al., 2017) indicate that the protection con-
ferred by levees is dramatically reduced for the 500-year flood (Figure 7) and non-existent for the 1000-year 
event (Figure S6). “Defended” areas are therefore exposed with a large number of structures potentially 
experiencing 1–4 m of inundation during the 500-year flood (Figure 7h). Threshold-dependent declines in 
protection have serious implications, as levee failure and overtopping account for 33% of flood losses in the 
US (Committee on Risk-Based Analysis for Flood Damage Reduction, 2000). Moreover, climate change may 
alter the underlying likelihood of river flooding in some areas (Swain et al., 2020; Wobus et al., 2017), and 
protected communities under historical conditions may no longer be so in the near future.

The challenge of characterizing hazard is not limited to public perceptions of risk, but to any framework 
where a threshold is used to define exposure to hazards and risk. Our national scale assessment of exposure 
(previous sections), for instance, accounted for spatial variations in inundation depths by screening for the 
upper 10% of flood depths. Nevertheless, it still is contingent on choosing a threshold (100-year flood) and a 
hydrodynamic model (“defended”; Sampson et al., 2015; Wing et al., 2017). While such uniform treatments 
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Figure 7.  Sacramento River Valley and Sacramento-San Joaquin delta region (California) (a) Site map showing the 100-year floodplain with and without 
levee protection, Hydrologic Unit Code 8 (HUC8) watershed boundaries, and built-up structure counts for 2015. (b and c) Trends in flood risk (Equation 4) for 
all HUC8 watersheds in the “California” HUC2 basin for the (b) “defended” and (c) “undefended” models (Sampson et al., 2015; Wing et al., 2017). Colored 
lines represent the two adjacent HUC8 watersheds highlighted in (a). (d–i) Depth maps for the “100-year” (left column) and “500-year” flood (right column). 
For each, the top row shows depths from the “undefended” model; the middle row shows depths from the defended model; and the bottom row shows the 
difference between the two.
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are needed and informative to delineate general policies, national scale 
analyses are not suited to evaluating local risk, with potentially serious 
implications for decision-makers. The issue is especially evident in the 
Upper Coons-Upper Auburn watershed (Figure 7a). From our national 
scale analysis, this watershed appears as a region of very low flood risk 
because we used the 100-year floodplain that accounts for flood control 
infrastructure (Figure 7b). However, if we had instead chosen the “unde-
fended” model, accelerated development in the southern portion of the 
watershed during the late 1980’s and early 2000’s led this area to become 
the second riskiest in California (Figure  7c), an important implication 
supported by any risk assessment that considers longer recurrence time 
floods (Figures 7g–7i and S6).

Development trends for this watershed are dominated by a small area 
protected by the RD 1000-Natomas earthen levee system, nestled be-
tween the confluence of the American and Sacramento Rivers. About 
a third of the new development in the watershed is in areas where lev-
ees afford >0.5 m of protection from inundation (Figure 7). Today, the 
levee-protected area is home to over 120,000 people, 24,000 structures, 
and 6 billion USD of assets (National Levee Database; US Army Corps 
of Engineers). Vulnerable structures, such as low-income housing, hos-
pitals, and schools, represent a very small but important proportion of 
the total number of buildings within hazardous zones. This ratio is sim-
ilar in neighboring communities (Figure 8a), suggesting that vulnerable 
buildings were not preferentially built into or excluded from the sector 
protected by RD 1000-Natomas.

In defended areas, non-vulnerable structures were added in two main 
pulses (Figure  8b), a trend that reflects new construction behind lev-
ees and the increasing risk shown in Figure 7c. This growth pattern is 
consistent with the so-called “levee effect.” For example, in neighbor-
ing Yuba County to the north, rapid post-levee expansion of homes into 
floodplains was largely precipitated by population pressure from nearby 
urban centers along with the removal of required homeowner flood in-
surance for houses behind the levee (Hutton et  al.,  2019). In contrast, 
the slow and relatively constant addition of non-vulnerable structures 
(Figure 8c) may indicate progressive gentrification driven by the inflated 
sense of security that levees provide. Given the small number of vulner-
able structures built over this time, nonetheless, caution is warranted in 
over-interpreting trends, or lack thereof, in development of vulnerable 
structures behind this levee system. While we fully recognize that build-
ing type only accounts for one aspect of vulnerability, we emphasize here 
that the structure-level attributes of the Zillow data provide new oppor-
tunities to characterize interactions between vulnerability and historic 
development patterns in hazard zones. As such, we view this case study 
as a template for future efforts that can be tailored toward local hazards 
and incorporate structure-level data, including the estimation of damage 
functions over multiple hazard probability levels (Pistrika et al., 2014).

5.  Conclusions
Increasing exposure is a key driver of worsening losses from natural haz-
ards. Using unique, fine-scaled data on the built environment, linked to 
hazards maps for earthquake, flood, hurricane, tornado, and wildfire, we 
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Figure 8.  Vulnerable land uses in defended and undefended sectors of 
the Upper Coons/Upper Auburn watersheds. Levee protection is inferred 
from differences in the depth of the 100-year flood estimated with the 
undefended and defended models (see Figure 7). (a) Proportion of 
vulnerable land uses in undefended (negative/small positive differences; 
shown in blue, green and yellow) and defended (large positive differences; 
shown in red). Note that most buildings in the watershed are in places 
where the models do not differ much. (b) Addition of non-vulnerable and 
(c) vulnerable structures across inundation classes in 1945–2015 (y-axis 
scales are different).
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found that hazard hotspots cover 31% of the country, but 57% of structures are located within their bounda-
ries. A slowing of exposure growth in the last decade reflects the national pattern of economic slowing, yet 
in all cases the number of structures in hazard hotspots is still growing.

One of the most significant barriers in national scale risk assessments is inadequate characterization of 
development patterns (Willis et al., 2016). The use of fine-scale data on the built environment provides 
advances in risk assessment including (a) more accurate identification of exposed structures, (b) detailed 
information on the characteristics of the places where people live, work and recreate, and (c) assessment of 
the land development patterns leading to changes in exposure (e.g., expansion and densification). Our re-
sults show that, while large in-fill urban and suburban development plays a key role in growing earthquake 
and hurricane exposure, expansion into previously undeveloped lands especially drives development in 
flood, tornado and wildfire hotspots. The subtle interactions of hazard geography at the urban-rural fringe 
particularly affect flood and wildfire exposure. River-side cities are expanding beyond their floodplains, so 
new suburban settlements tend to be less exposed. Conversely, the growth of relatively low density develop-
ment into natural vegetation increases wildfire exposure, and injects more human ignitions into flammable 
landscapes (Balch et al., 2017). This relatively recent, compound phenomenon suggests potential for signif-
icant increase in wildfire loss in the near future.

Hazard hotspots analyses with fine-resolution exposure data can also point to where mitigation efforts are 
most likely to be effective, and how they might best be implemented. For example, regional planning and 
investment patterns might most affect future hurricane losses, whereas local codes that make buildings saf-
er would pay-off for earthquake and tornado hazards. A mixture of approaches, including micro-zonation 
and building codes, should be directed at wildfire and flood hotspots. In all cases, care is needed to assess 
the potential for “levee effects” whereby mitigation actions induce further exposure, vulnerability, or both. 
As illustrated with the construction of levees in the Sacramento Valley, model assumptions and regulato-
ry frameworks shape the design of mitigation efforts and may inadvertently increase the risk of extreme 
events. It is worth noting that high risk can exist in other parts of the country where hazard frequency and 
magnitude is lower but exposure is disproportionately larger due to the concentration of people and assets. 
Finally, climate change will alter the occurrence and intensity of weather- and climate-related events in 
ways difficult to predict but with worrisome trends. Growing attention to such trends by financial and 
insurance firms, in turn, may start to alter development patterns. The dynamic nature of risk makes under-
standing exposure imperative in this rapidly changing environment.

Data Availability Statement
Data sets for this research are available in these citations: Demuth et al. (2006), Dillon (2018), Leyk and 
Uhl (2018), NOAA (2019), Rukstales and Shumway (2019), Sampson et al. (2015), and Uhl and Leyk (2020). 
More information on accessing the data can be found at http://www.zillow.com/ztrax.
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